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A B S T R A C T

We develop empirically-grounded error envelopes for localization of a point contamination release event in
the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-
intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and
velocity is known to within a factor of two of our best guess from well observations prior to source iden-
tification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough
data via the advection-dispersion equation. We employ high performance computing to generate numerous
random realizations of aquifer parameters and well locations, simulate well breakthrough data, and then
employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time)
location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate
the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality
(fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channel-
ized flow). We find that for purely spatial localization of the contaminant source, increased data quantities
can make up for reduced model quality. For space-time localization, we find similar qualitative behavior,
but significantly degraded spatial localization reliability and less improvement from extra data collection.
Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-
guess optimization strategy. This greatly enhanced performance, but gains from additional data collection
remained limited.

Published by Elsevier B.V.

1. Introduction

Inverse problems of contaminant source identification are an
essential part of environmental engineering practice, relevant to
both design of remediation schemes and assignment of respon-
sibility. A goal of the inverse analysis might be, for example, to
determine the location of a source, its time of release, or both, based
on measurements downgradient of the source. This problem is con-
founded by two factors: the subsurface is a highly heterogeneous
environment, and it is also an information-poor one, in which the
heterogeneity is inevitably only partially characterized. Thus, even if
it were possible computationally to model the subsurface at a high
resolution, data would not constrain the model. As a consequence, in
practice one is always attempting to estimate quantities of interest
(along with a number of nuisance parameters), using a model that is
simplified relative to reality. A schematic of this situation is shown in
Fig. 1. In this regard, inverse analysis in contaminant hydrogeology is
converse to the situation in a number of other disciplines in which a
process model is assumed to be reliable, but data to be limited, poor
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and “noise-corrupted”. Here, measurements are comparatively accu-
rate, but the assumed process model is at best a gross simplification.
The practitioner’s hope is that, by collecting more data, a more accu-
rate prediction can be made, even though all data will be interpreted
through a systematically incorrect model. Given that subsurface con-
tamination puts human health at risk and costs for those found liable
for remediation may be large, it appears important to not only make
optimal predictions, but to understand of how severe the errors in
these predictions may be, given a certain amount of data. Looked at
another way: we may want to understand the marginal value of fur-
ther data collection expense; how much will this reduce uncertainty,
and will this be worth the cost?

In light of the importance of inverse analysis to contaminant
hydrogeology, many authors have attempted to address aspects of
the problem, using a variety of methods. These techniques notably
include classic regularization methods (e.g. Skaggs and Kabala,
1994), statistical methods (e.g. Snodgrass and Kitanidis, 1997), and
nonlinear simulation-optimization methods (e.g. Mahar and Datta,
2000). While a full review of methods employed for this problem
is out of scope, the reader is referred to the survey paper by Bagt-
zoglou and Atmadja (2005), and to Table 1 of Michalak and Kitanidis
(2004) for summary of what had been accomplished as of the
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Fig. 1. Schematic diagram comparing the true contaminant plume developing in a
heterogeneous environment (left) with a potential best-fit plume (right) generated by
assuming subsurface transport is described by an advection-dispersion equation with
spatially homogeneous parameters.

middle of the last decade. In subsequent literature, broadly the same
types of inverse techniques have been used, although a notable
recent conceptual development is the introduction of Markov Chain
Monte Carlo (MCMC) methods to the source identification problem
by Hazart et al. (2014) and Zhang et al. (2015). As indicated by
Michalak and Kitanidis, much of the early literature was focused on
identification of contamination histories at known-location point-
sources given transport in previously-characterized homogeneous
flow fields. In recent literature, simulation-optimization methods

have gained prominence, as more complicated scenarios featuring,
e.g., multiple dimensions, potentially unknown source locations, and
flow-field uncertainty, have come to be considered (Alapati and
Kabala, 2000; Aral et al., 2001; Ayvaz, 2010; Bashi-Azghadi et al.,
2010; Datta et al., 2009; Guan et al., 2006; Jha and Datta, 2013; Mahar
and Datta, 2001; Yeh et al., 2007).

Error estimation has also been considered in the literature. To
some extent, analytical adjoint techniques (Cheng and Jia, 2010;
Huang et al., 2008; Milnes and Perrochet, 2007; Neupauer and Lin,
2006; Neupauer and Wilson, 1999, 2005), and their particle tracking
analogs (e.g. Bagtzoglou et al., 1992) directly solve for uncertainty
estimates, but only to the extent that all uncertainty is captured by
a Fickian dispersion overlain on a known velocity field. Statistically-
oriented methods (Michalak and Kitanidis, 2004; Snodgrass and
Kitanidis, 1997; Wagner, 1992; Wagner and Gorelick, 1986; Wood-
bury et al., 1998) incorporate a covariance matrix for the parameters,
and from its diagonal entries produce confidence intervals, assuming
independent Gaussian errors. However, this is assumed known a pri-
ori, and methods are not given for grounding this covariance matrix
in physics. Similarly, Bayesian techniques (e.g., Hazart et al., 2014;
Koch and Nowak, 2016), generate a posterior probability distribu-
tions on the parameter of interest, which may be considered as error
envelopes on maximum a posteriori point estimates.

Despite the large literature on optimal identification, as well
as uncertainty analysis once an error structure has been posited,
there appears to be comparatively little in the literature regard-
ing the development of error bounds from the interplay of physics,
model and data inaccuracies. In our review, we found only the
following papers addressing by parametric study the connection
between data quality and prediction error: Skaggs and Kabala (1998)
considered the recovery of an upgradient contaminant impulse
from downgradient point breakthrough in a 1D advective-dispersive
transport problem. They considered how signal strength and noise
level combined to affect source history identification accuracy. A
simulation-optimization study by Datta et al. (2009) considered
how fixed-noise-level head and concentration measurement errors

Fig. 2. Plot of the fluctuation (model infidelity) function, f, with parameters L = 3 m, m = 0.1.
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Fig. 3. Example flow field induced by mean head gradient in the negative x-direction
across a heterogeneous hydraulic conductivity field (multi-Gaussian with s2

ln K = 2),
illustrating semi-regular flow channeling. Each green arrow reflects the flow direction
and magnitude at its base.

combine to affect source-strength estimation error statistics for
three levels of subsurface parametric uncertainty. (The number of
realizations used was not revealed.) A similar study (Datta et al.,
2011) instead considered propagation of concentration measure-
ment errors for five combinations of known porosity and longitudi-
nal dispersivity through to source strength estimation error. (Ten to
twenty realizations were used for each of the five scenarios.) Nei-
ther of these two studies considered the impact of different noise

levels the way that Skaggs and Kabala (1998) had, and both used
fixed numbers of monitoring wells. Jha and Datta (2013) qualitatively
considered the accuracy of source identifications from five different
arbitrary configurations of five monitoring wells, but abstracted no
general principles and considered no other numbers of wells.

Data quantity does not appear to have been considered explic-
itly in any study we found, and model quality/infidelity was only
explored as outlined in the previous paragraph: by treatment as ran-
dom, non-systematic noise. In light of the importance of physically-
grounded error analysis for source identification, it appears timely
to directly consider quantification of the combined effects of model
infidelity and data quantity in the context of a quasi-realistic solute
transport model. This is the topic of our paper.

Naturally, there are a huge amount of possible forensic contam-
inant transport problems that environmental engineers may face in
practice, and it is not possible to address all of them systematically in
one place. For our purposes, we select a simple problem: the space-
time localization of a point contaminant source in a 2D aquifer with
simple heterogeneity, by means of an advection-dispersion equation
(ADE) model and breakthrough curves from a number of randomly
located wells intersecting the plume.

2. Methodology

We perform three separate, related source localization studies:

1. Purely spatial localization, employing plausible single initial
parameter guesses and a local optimization algorithm.

2. Spatio-temporal localization, employing plausible single initial
parameter guesses and a local optimization algorithm.

3. Spatio-temporal localization, employing a pseudo-global
search algorithm (i.e., multiple random initial guesses).

2.1. General configuration

All our Monte Carlo analyses involve repeated random genera-
tion of 2D “aquifer” realizations with different transport parameters

Fig. 4. Results of a single optimization run, with no model infidelity (m = 0), and 10 wells, which was optimally successful (all parameters were correctly estimated to several
significant figures: xs = 0.00m, ys = 0.00m, v = 1.487m/y,al = 3.347m,at = 0.135m). The plume described by the initial parameter guess is indicated by the red square
(release location at t = 0 y), and the red contours (plume extent at t = 50 y). The plume described by the optimized parameters is indicated by the blue triangle (release location
at t = 0 y), and the blue contours (plume extent at t = 50 y). The true plume is indicated by the green circle (release location at t = 0 y), and elsewhere its concentration at
t = 50 y is illustrated by the green intensity. Black points indicate monitoring well locations. Note unequal axis scales.
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(a) (b)

(c)

Fig. 5. Empirical probability distribution functions for the normalized source spatial localization error, 4 (Eq. (10)), for given numbers of available well breakthrough curves, for
each of three degrees of model infidelity: (a) m = 0.1, (b) m = 0.5, (c) m = 0.9.

and well locations. The random generation of realizations is per-
formed automatically via scripts written in the Julia language. Each
realization is defined by a mean velocity, v, with known direction
(without loss of generality, always in the positive x-direction) and
uniformly distributed random magnitude, v ≡‖ v ‖, between 1
and 4 m/y, longitudinal dispersivity, al, between 0.2 and 5 m, and
transverse dispersivity, at, between 0.02 and 2 m. The instantaneous
contaminant source is always at the point (xs, ys) = (0, 0). For spatial
identification the release event is at trel = 0 y (assumed known), and
for space-time identification is chosen randomly (discussed below).
In all studies, the monitoring interval runs from tmin = 0 y until
tmax = 50 y, with measurements recorded every 1 y. It is worth
noting that with such a long monitoring interval, it is unlikely that
(at least in an unconfined aquifer), the flow field would be free of

seasonal transients. However, if we view v as the mean velocity over
time as well as space, then short-duration zero-mean flow fluctua-
tions may be subsumed into the Fickian dispersion appropriate to
long range forecasting at such a site. Thus, the procedure outlined
here does not need to explicitly account for seasonal transients.

The concentration taken to be the truth for the purposes of the
study, c(x, y, t), is determined in three stages:

First, a dummy concentration, d(x, y, t), is computed by means of
the advection-dispersion equation (ADE),

∂d(x, y, t)
∂t

= v

[
−∂d(x, y, t)

∂x
+ al

∂2d(x, y, t)
∂x2

+ at
∂2d(x, y, t)

∂y2

]
, (1)
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Fig. 6. Empirical 90% and 95% confidence intervals for the normalized source spatial
localization error, 4 (Eq. (10)). Data points are plotted for the 90% and 95% error thresh-
olds for each of the four quantities of wells, for each of the three values of m (model
infidelity) considered explicitly in the study. Best-fit exponential curves are plotted
through the data points for each of the two confidence thresholds.

subject to the initial condition

d(x, y, 0) = d(x)d( y). (2)

This initial value problem, solved on an infinite domain, yields the
following Gaussian solution:

d(x, y, t) =
1

4pvt
√
alat

exp

(
− (x − vt)2

4alvt

)
exp

(
− y2

4atvt

)
. (3)

Second, a fluctuation function, f (x, y; m, L), is defined as

f (x, y; m, L) ≡ 1 + m sin
(

2px
L

)
sin

(
2py

L

)
, (4)

where m and L represent fluctuation magnitude and period, respec-
tively, and are fixed for each batch of realizations. An example form
of this function is shown in Fig. 2.

Third, the true concentration is computed:

c(x, y, t) = f (x, y; m, L)d(x, y, t). (5)

While its exact form is arbitrary, f qualitatively reflects the effect of
flow channeling in heterogeneous hydraulic conductivity fields (an
example is shown in Fig. 3) and the result that, under advection in
heterogeneous velocity fields, concentration is much higher in the
high velocity regions (Edery et al., 2014). The fluctuation function
we have chosen to generate model infidelity also has the desirable
properties of conserving mass in the limit of large uniform plumes,
and being spatially smooth.

Wells are randomly located on a rectangle whose edges are
aligned with the coordinate axes, with corners at (xmin, ymin) and
(xmax, ymax), where

xmin = v(tmin − trel) −
√

12alv(tmin − trel) (6)

xmax = v(tmax − trel) +
√

12alv(tmax − trel) (7)

ymin = −
√

12atv(tmax − trel) (8)

ymax =
√

12atv(tmax − trel). (9)

(Note again that trel = 0 for the spatial localization study.) These
conditions ensure that the well field used for inversion is spatially
coextensive with the plume, and prevent use of an excess of wells
with zero readings for all time. We posit that this is realistic, and
corresponds to a strategy of generally not calibrating against remote
wells with null readings. Note also that because the well field used
for calibration scales with the plume, the actual units chosen for
space (m) and time (y) are immaterial to the analysis, and the same
reliability statistics will hold regardless of their choice. Breakthrough
curves for well w, located at (xw, yw) are computed by evaluating
c(xw, yw, t) over the interval t = [0, tmax]. Fig. 4 shows an example
point source and randomly generated well field in relation to the
plume.

For a given realization (i.e. set {v,al,at}, for spatial localization or
set {v,al,at, trel}, for space-time localization), interpretation is per-
formed by repeated simulation and optimization. Candidate values
of parameters x̃s, ỹs, ṽ, ãl, ãt and, if relevant, t̃rel , are chosen (the
∼ overbar indicates an estimate of the variable beneath), substi-
tuted into Eq. (1), and breakthrough curve estimates are made at
each well. Different sets of parameters are tried, in an attempt to
reduce breakthrough curve fitting error. During the optimization,
the upper and lower bounds on v, al, and at are assumed known,
and the estimated source location is allowed to vary within the box
[−xmax, xmax] × [ymin, ymax]. Note that the true data is generated by
c, but simulation is performed with the overly simple model, d, with
the degree of model infidelity controlled by m.

For both the spatial and space-time localization studies, three dif-
ferent values of m are considered: m = 0.1, m = 0.5, and m = 0.9.
For each m, four different data quantities (i.e. numbers of wells,
n) are considered: n = 2, n = 4, n = 8, or n = 16 wells are
used for identification. For each of these twelve combinations, the
simulation-optimization problem is repeated for hundreds of differ-
ent realizations, with the number of realizations selected to produce
an acceptable trade-off between computation time and empirical
probability distribution (pdf) robustness. In all cases, L = 3 m is
used as the fluctuation length scale. Fig. 4 presents the results of
optimization on a single characteristic realization.

2.2. Spatial localization

For each realization, r, the initial guess for the x-coordinate
of the source location is the x-coordinate of the farthest upgra-
dient well, the y-coordinate guess is randomized, and the initial
guesses v = 2 m/y, al = 0.5 m, and at = 0.1 m are used. The
Levenberg–Marquardt iterative algorithm (Levenberg, 1944; Mar-
quardt, 1963) is used to attempt to find the optimal parameter
set, using the MADS (Model Analysis and Decision Support) soft-
ware. The Levenberg–Marquardt algorithm is a popular method for
model calibration used in many software tools. During the optimiza-
tion process, the algorithm interpolates between the second-order
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Fig. 7. Two examples of realizations with excellent coherence of true and fitted plumes at late time, with greatly different error metrics 4 and t. (Note that spatial scales are not
the same.) Color and shape coding is as in Fig. 1. Top: true release time was −49.90 y and fitted release time was −13.09 y (t = 0.736, 4 = 0.723). Bottom: true release time was
−0.50 y and fitted release time was −0.44 y (t = 0.001, 4 = 0.001); green point is covered by blue point due to near-perfect fit.

Gauss–Newton algorithm and the first-order method of steepest
descent in a way which makes the algorithm more robust than either
the Gauss–Newton or the steepest descent algorithms by them-
selves. As with many other optimization algorithms, the Levenberg–
Marquardt algorithm is efficient for finding local minima without
guaranteeing that these are global minima. MADS is an open-source
high-performance computational framework written in the Julia lan-
guage and available as a Julia distribution package. Information
about MADS including documentation, examples, source code, and
applications can be found in Vesselinov and Harp (2013), Vesseli-
nov et al. (2016a,b,c). The identified location of the source in space
after 100 Levenberg–Marquardt iterations (informally, we observed
that the algorithm typically converged long before this many iter-
ations had elapsed) is taken as the prediction of the optimization
technique, unless the optimized location is downgradient of its
initial guess. In this case, the optimization is repeated with far-
ther upgradient initial guesses until the optimized x̃s is upgradient
of all the wells. The magnitude of the distance from the esti-
mated source location to the true source location (at the origin) is

determined, and is normalized relative to the distance traveled by
the plume centroid over the 50 year monitoring period. The resulting
statistic,

4r ≡
√

x̃2
s + ỹ2

s

v(tmax − tmin)
, (10)

of relative spatial source localization error is recorded. The value of
4r for each realization is considered to be a draw of a random vari-
able, 4. From the ensemble of values of 4r, by computing a smoothed
histogram of the values of 4r corresponding to a given ordered pair
of values (m, n), empirical probability distribution functions of 4 are
generated for each of these 12 ordered pairs. (For clarity, pseudocode
for this procedure is shown in Algorithm 1.) Also a relationship for
90% and 95% confidence envelopes on the normalized spatial local-
ization error magnitude is computed. For this study, 500 realizations
are used.
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Algorithm 1. Pseudocode for generating error envelopes in the spatial localization study.

2.3. Space-time localization (single initial guess)

This space-time localization study is nearly identical to the spatial
localizationstudydescribedabove. Itdiffersinthatforeachrealization,
trel is uniformly randomly selected as an unknown random time in the
interval [−50, 0], rather than having known value trel = 0, as in the
spatial previous set of simulations. That trel ∈ [−50, 0] is taken as the
only known prior information about it. Using the same Levenberg–
Marquardt algorithm used for the spatial localization simulations, trel
is estimated (as t̃rel) in parallel with all the parameters fit in the purely
spatial identification problem. (The initial guess for trel is always 0 y.)
Because wells were still placed according to Eqs. (6)–(9), wells only
cover the plume trajectory from t = tmin(= 0), onwards. Samples also
are only taken, as before, beginning at tmin = 0 y. This set of space-
time identification simulations is thus an extrapolation problem in a
way that the previous set is not. For each realization, r, the statistic 4r

is computed, as before, and empirical pdfs of the spatial localization
error, 4, are again computed for each ordered pair (m, n). In addition,
for each realization, another diagnostic statistic, tr, summarizing the
temporal localization error is tabulated:

tr ≡
∣∣∣t̃rel − trel

∣∣∣
tmax − tmin

. (11)

These are treated as samples of a random variable, t, and empirical
pdfs for t are computed for each (m, n), as above. For this study, 1000
realizations are used to compute the source localization error, and a
subset of 500 are used to compute the temporal localization error.

2.4. Space-time localization (pseudo-global search)

This space-time localization study uses the same essential setup
and parameter ranges as the single-initial-guess space-time local-
ization study. It differs from it only in the number of realizations

used (300, on account of increased computational complexity), and
in the optimization approach used. For this study, for each realiza-
tion, twenty sets of initial parameter guesses, {x̃s, ỹs, ṽ, ãl, ãt , t̃rel}, are
chosen randomly from the full range of allowable parameters. For
each set of initial parameters, a Levenberg–Marquardt space-time
optimization, identical to that used for the single-initial-guess study,
is performed. Of all twenty sets of locally optimized parameters, the
set which produces the smallest value of the objective function is
selected as the optimal solution. The values of 4r and tr correspond-
ing to the optimal solution for each realization, r, are recorded, and
pdfs of 4 and t are generated, as before.

3. Results and discussion

3.1. Spatial localization

Results for the spatial localization simulations are summarized in
two figures. Fig. 5 shows empirical pdfs for the spatial localization
error, e, under each of three degrees of model infidelity. Fig. 6 plots
the amount of error at two different confidence intervals for each of
the pdfs shown in Fig. 5, and illustrates how these are affected by
both data quantity and model quality. Qualitatively, it is apparent
that increasing data collection increases estimation reliability, both
at the 90% and 95% confidence thresholds. A perhaps surprising result
was that relatively extreme differences in model fidelity had only
moderate impact on the accuracy of prediction, for a given quantity
of sampling locations. Furthermore, the impact of model infidelity
appeared to be easily exceeded by the impact of more sampling (for
the modest number of wells that we considered, similar to what one
might find at a real site). Another observation was that the increase
in confidence interval size (i.e. uncertainty) with increasing model
infidelity was often small.
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(a) (b)

(c)

Fig. 8. Empirical probability distribution functions, in the case of unknown release time, for the normalized source spatial localization error, 4 (Eq. (10)), for given numbers of
available well breakthrough curves, for each of three degrees of model infidelity: (a) m = 0.1, (b) m = 0.5, (c) m = 0.9. Solid curves with shading underneath represent the
single-initial-guess optimization procedure. Dashed curves represent the twenty-initial-guess pseudo-global optimization procedure.

3.2. Space-time localization

For space-time localization, as indicated in Section 2, the source
was spatially and temporally outside the data region. Thus, iden-
tification involved space-time extrapolation, and was consequently
more prone to error. An example of the difficulties is seen in Fig. 7,
in which fitted plumes for two realizations of the same space-time
identification problem are shown. Despite both having excellent
coherence to the true plume when t = 50 y, they vary greatly
in the accuracy of source identification, with one featuring error
metrics t = 0.736, 4 = 0.723, and the other featuring error metrics

t = 0.001, 4 = 0.001. This is indicative of the difficulties that
are faced with unsupervised identification when both location and
time of release are unknown, with data unavailable for the early part
of the plume’s trajectory. Approximately, errors in both spatial and
temporal localization can counteract each other to generate similar
data: since dispersivity is also a fitting parameter, a recent source
located near the observation field can produce breakthrough data
similar to that from an earlier source which is located farther upgra-
dient. A hypothesis tested was that by adding additional measure-
ment points (i.e. wells), the non-uniqueness would be diminished
and space-time identification improved.
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Fig. 9. Empirical 90% and 95% confidence intervals for the normalized source spatial
localization error, 4 (Eq. (10)), in the case of unknown release time. Data points are
plottedforthe90%(squaremarkers)and95%(triangularmarkers)confidencethresholds
for each of the four quantities of wells, for each of the three values of model infidelity
considered explicitly in the study: m = 0.1 (red markers), m = 0.5 (green markers),
and m = 0.9 (blue markers). Both the single-initial-guess optimization (solid markers)
and pseudo-global optimization (empty markers) procedures are represented. Best-fit
exponential curves are plotted through the data points for each of the two confidence
thresholds and for each of the optimization procedures.

We found that this was generally not the case, and because the
results obtained appeared to be too poor for practical use, we ran a
second study which employed a pseudo-global optimization strat-
egy, hypothesizing that the poor performance of the optimization
might be accounted for by the presence of many local minima of
the objective function (note that in Fig. 7, the better identification
features a source closer to the well field than the poor fit).

Fig. 8 shows empirical probability distribution functions (pdfs) for
4, for each level of model infidelity, m, and number of wells, n, in
the case when trel is unknown. The pdfs have qualitatively the same
behavior as seen in Fig. 5: they are asymmetric, with mean location
moving towards the true location as data quantity increases. How-
ever, for the single-initial-guess identification procedure it is clear
that the spatial localization is generally much worse when trel is
unknown; indeed the lack of knowledge about release time is seen
as a greater confounding factor than lack of knowledge about the
subsurface transport parameters and even high model infidelity in
the spatial localization study. Furthermore, despite more data gener-
ally improving localization, for 90% and 95% confidence thresholds,
additional sampling had only a modest impact, as seen in Fig. 9. This
contrasts strikingly with the study of source localization in which
the release time is known. The pseudo-global (twenty-initial-guess)
optimization approach performed significantly better at all model
infidelity levels, and particularly for low model infidelity, when
m = 0.1. However, there remained limited value to additional data
collection, except at the lowest infidelity level, where it was apparent
as strongly as in the purely spatial identification task.

For temporal localization in the same circumstances, the single-
initial-guess localization performance was relatively poor, as seen
in Fig. 10. Here, the effect of additional data was modest, although
larger numbers of wells tended to have a better probability of a local-
ization close to the true release time. Increasing model infidelity
(i.e., m) also had a modest degrading effect on localization. However,

it is easy to analytically compute the pdf for t for a naive identi-
fication scheme in which t̃rel is simply selected from a uniform
distribution on the interval [−50, 0], and this is also shown in Fig. 10.
Remarkably, this approach performs as well as or better than the
Levenberg-Marquardt optimization approach for temporal identifi-
cation in this case. The 90% and 95% confidence thresholds, shown
as a function of n in Fig. 11 reinforce this observation. They showed
no improvement with additional information, were of approximately
of the same scale as the 50 y fitting window, and did not improve
upon their naive estimates. This is to say: for error envelopes corre-
sponding to large degrees of confidence, the optimization (or model
calibration) process was not seen to add value to the temporal iden-
tification beyond the prior information about the unknown model
parameters. The pseudo-global optimization procedure substantially
improved temporal localization and produced better-than-random,
although still not outstanding, results. As for the spatial compo-
nent of the space-time localization task, at the lowest infidelity
level the positive impact of additional data collection re-emerged
strongly.

4. Summary and conclusion

In this paper, we addressed the near absence from the contam-
inant source identification literature of empirically-grounded rela-
tionships between meta-parameters representing the data quantity
and model quality in an inverse estimation exercise and the qual-
ity of predictions from that exercise. We approached this task by
means of Monte Carlo studies: running multiple forward models to
generate simulated data and then attempting to localize the con-
taminant source by inverse analysis of each set of simulated data,
using a simplified model. Three related studies were performed, one
considering spatial localization of a point source and two consid-
ering space-time localization of a point source. In all studies, only
temporal breakthrough data at randomly-located wells was con-
sidered for the identification; nuisance parameters describing the
subsurface transport regime had to be simultaneously identified
from the same data set as part of model calibration. Prior information
was restricted to flow direction and rough bounds on its speed and
very rough, one-to-two-order-of-magnitude, bounds on the other
subsurface parameters. In the space-time identification problem, a
50 y interval in which the source event was known to have occurred
was also assumed.

For all studies, we employed an unsupervised, unregularized
simulation-optimization approach for the source localization.
We developed relationships between localization accuracy, data
quantity (represented by number of wells), and model quality (rep-
resented by magnitude of divergence between the model used to
generate the synthetic observations and the simpler model used
for calibration against them). A key question considered was the
degree to which additional data could counteract the inevitable
over-simplification of the model used for calibration.

For the purely spatial localization problem, we found that the
unregularized source identification algorithm was qualitatively suf-
ficient, and that additional sampling points were capable of making
up for model over-simplification, even in the case of high model
infidelity (m = 0.9). We generally found a strong relationship
between use of more wells and increased identification performance.
When 90% and 95% confidence intervals were computed, the error
decreased quasi-linearly with the number of wells used for calibra-
tion, up to about 10 wells, with diminishing, but still significant,
returns beyond this point. It is worth noting that the modal (i.e.,
most likely) error was small, relative to final plume extent, even with
large model infidelity and small numbers of wells. However, the 95%
confidence localization error (relevant to responsibility assignment
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(a) (b)

(c)

Fig. 10. Empirical probability distribution functions, in the case of unknown release time, for the normalized source temporal localization error, t (Eq. (11)), for given numbers
of available well breakthrough curves, for each of three degrees of model infidelity: (a) m = 0.1, (b) m = 0.5, (c) m = 0.9. For comparison, the naive distribution function
for t, arising from a uniform random selection of t̃rel is shown as a dotted line on all plots. Solid curves with shading underneath represent the single-initial-guess optimization
procedure. Dashed curves represent the twenty-initial-guess pseudo-global optimization procedure.

or interventions targeted at human health) remained comparatively
substantial.

For the space-time localization problems, identification perfor-
mance was worse, particularly when optimization proceeded from
a single initial parametric estimate. Our results are suggestive that,
when neither the source location nor source release time are known,
results of unregularized simulation-optimization inverse analysis
may not be reliable enough for responsibility assignment, and that
one should be cautious about forward predictions stemming from
the optimized parametrization. These results underscore the impor-
tance of bringing all available information about the source to bear
on the problem (easy to do in a simulation-optimization framework)
to regularize the results.

When twenty random starting points were used for the space-
time optimization approach, rather than a “best guess”, and the
best fit of the twenty local optimizations was selected, performance
was significantly improved, suggesting that the objective function
has a relatively complicated arrangement of multiple local minima
for this problem. However, performance remained relatively poor
compared to the purely spatial identification, particularly at the 90%
and 95% confidence levels, and did not appear to be reliable enough
for responsibility assignment. We also observed that, with multiple
starting points (i.e. initial guesses for unknown model parameters in
the optimization process) and low levels of heterogeneity, the pat-
tern of additional data leading to improved localization re-emerged.
Because of computational time limitations, it was not possible to test
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Fig. 11. Empirical 90% and 95% confidence intervals for the normalized source tempo-
ral localization error, t (Eq. (11)), in the case of unknown release time. Data points are
plotted for the 90% (square markers) and 95% (triangular markers) confidence thresh-
olds for each of the four quantities of wells, for each of the three values of model
infidelity considered explicitly in the study: m = 0.1 (red markers), m = 0.5 (green
markers), and m = 0.9 (blue markers). Both the single-initial-guess optimization
(solid markers) and pseudo-global optimization (empty markers) procedures are rep-
resented. Best-fit exponential curves are plotted through the data points for each of
the two confidence thresholds and for each of the optimization procedures.

space-time optimization with very large numbers of initial guesses.
It would be interesting to see if, using near-true global optimization,
with thousands of random initial guesses, this pattern re-emerged
fully.

In all cases, it bears recognition that the data simulated for
the study was generated in a relatively idealized fashion (regular
channeling was imposed on a plume that otherwise was precisely
described by the 2D ADE with spatially homogeneous parameters),
the point-like nature of release was taken as known, and intact well
records were available at all of the relevant locations. Furthermore,
some sites of remedial interest might have a shorter observation
window than assumed here (while the units of time are arbi-
trary, simulations were designed so that substantial plume evolution
occurred in the well field over the monitoring interval—something
that is not assured in practice). Thus, the computed confidence
intervals should be considered as baselines that are suggestive of
qualitative trends, and practitioners should be aware that real-world
uncertainty is apt to be greater.

Since the computation of error envelopes as functions of data
quantity and model quality has been largely unaddressed in the
contaminant source identification literature, there are many oppor-
tunities to both refine these results and to undertake related work
of both practical and theoretical significance. A particularly inter-
esting topic for follow-up study is an extension of the space-
time localization study which showed comparatively weak local-
ization performance. We believe that consideration of the size of
error envelopes as functions of the tightness of the prior con-
straint on the source release time (i.e. trel ∈ [t1, t2]), simulta-
neously with the value of |tmin − trel| is apt to be enlightening.
This follow-up study would reveal how much regularization is

required to counteract a certain amount of extrapolation (i.e., ill-
posedness of the inverse problem). It is left to be addressed in future
work.
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